Mink Subdomains That Mediate Modulation of and Association with Kvlqt1
نویسندگان
چکیده
KvLQT1 is a voltage-gated potassium channel expressed in cardiac cells that is critical for myocardial repolarization. When expressed alone in heterologous expression systems, KvLQT1 channels exhibit a rapidly activating potassium current that slowly deactivates. MinK, a 129 amino acid protein containing one transmembrane-spanning domain modulates KvLQT1, greatly slowing activation, increasing current amplitude, and removing inactivation. Using deletion and chimeric analysis, we have examined the structural determinants of MinK effects on gating modulation and subunit association. Coexpression of KvLQT1 with a MinK COOH-terminus deletion mutant (MinK DeltaCterm) in Xenopus oocytes resulted in a rapidly activated potassium current closely resembling currents recorded from oocytes expressing KvLQT1 alone, indicating that this region is necessary for modulation. To determine whether MinK DeltaCterm was associated with KvLQT1, a functional tag (G55C) that confers susceptibility to partial block by external cadmium was engineered into the transmembrane domain of MinK DeltaCterm. Currents derived from coexpression of KvLQT1 with MinK DeltaCterm were cadmium sensitive, suggesting that MinK DeltaCterm does associate with KvLQT1, but does not modulate gating. To determine which MinK regions are sufficient for KvLQT1 association and modulation, chimeras were generated between MinK and the Na(+) channel beta1 subunit. Chimeras between MinK and beta1 could only modulate KvLQT1 if they contained both the MinK transmembrane domain and COOH terminus, suggesting that the MinK COOH terminus alone is not sufficient for KvLQT1 modulation, and requires an additional, possibly associative interaction between the MinK transmembrane domain and KvLQT1. To identify the MinK subdomains necessary for gating modulation, deletion mutants were designed and coexpressed with KvLQT1. A MinK construct with amino acid residues 94-129 deleted retained the ability to modulate KvLQT1 gating, identifying the COOH-terminal region critical for gating modulation. Finally, MinK/MiRP1 (MinK related protein-1) chimeras were generated to investigate the difference between these two closely related subunits in their ability to modulate KvLQT1. The results from this analysis indicate that MiRP1 cannot modulate KvLQT1 due to differences within the transmembrane domain. Our results allow us to identify the MinK subdomains that mediate KvLQT1 association and modulation.
منابع مشابه
CALL FOR PAPERS Protein and Vesicle Trafficking, Cytoskeleton An LQT mutant minK alters KvLQT1 trafficking
Krumerman, Andrew, Xiaohong Gao, Jin-Song Bian, Yonathan F. Melman, Anna Kagan, and Thomas V. McDonald. An LQT mutant minK alters KvLQT1 trafficking. Am J Physiol Cell Physiol 286: C1453–C1463, 2004. First published February 4, 2004; 10.1152/ajpcell.00275.2003.—Cardiac IKs, the slowly activated delayed-rectifier K current, is produced by the protein complex composed of and -subunits: KvLQT1 and...
متن کاملAn LQT mutant minK alters KvLQT1 trafficking.
Cardiac I(Ks), the slowly activated delayed-rectifier K(+) current, is produced by the protein complex composed of alpha- and beta-subunits: KvLQT1 and minK. Mutations of genes encoding KvLQT1 and minK are responsible for the hereditary long QT syndrome (loci LQT1 and LQT5, respectively). MinK-L51H fails to traffic to the cell surface, thereby failing to produce effective I(Ks). We examined the...
متن کاملInteractions of the antimalarial drug mefloquine with the human cardiac potassium channels KvLQT1/minK and HERG.
Mefloquine is a quinoline antimalarial drug that is structurally related to the antiarrhythmic agent quinidine. Mefloquine is widely used in both the treatment and prophylaxis of Plasmodium falciparum malaria. Mefloquine can prolong cardiac repolarization, especially when coadministered with halofantrine, an antagonist of the human ether-a-go-go-related gene (HERG) cardiac K+ channel. For these...
متن کاملMinK-KvLQT1 fusion proteins, evidence for multiple stoichiometries of the assembled IsK channel.
IsK, a slowly activating delayed rectifier K+ current through channels formed by the assembly of two channel proteins KvLQT1 and MinK, modulates the repolarization of cardiac action potentials. Mutations that map to the KvLQT1 and minK genes account for more than 50% of an inherited cardiac disorder, the Long QT syndrome (Splawski, I., Tristani-Firouzi, M., Lehmann, M. H., Sanguinetti, M. C., a...
متن کاملLong QT syndrome-associated mutations in the S4-S5 linker of KvLQT1 potassium channels modify gating and interaction with minK subunits.
Long QT syndrome is an inherited disorder of cardiac repolarization caused by mutations in cardiac ion channel genes, including KVLQT1. In this study, the functional consequences of three long QT-associated missense mutations in KvLQT1 (R243C, W248R, E261K) were characterized using the Xenopus oocyte heterologous expression system and two-microelectrode voltage clamp techniques. These mutations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 116 شماره
صفحات -
تاریخ انتشار 2000